Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the topology of manifolds with nonnegative Ricci curvature and linear volume growth (2410.15488v1)

Published 20 Oct 2024 in math.DG

Abstract: Understanding the relationships between geometry and topology is a central theme in Riemannian geometry. We establish two results on the fundamental groups of open (complete and noncompact) $n$-manifolds with nonnegative Ricci curvature and linear volume growth. First, we show that the fundamental group of such a manifold contains a subgroup $\mathbb{Z}k$ of finite index, where $0\le k\le n-1$. Second, we prove that if the Ricci curvature is positive everywhere, then the fundamental group is finite. The proofs are based on an analysis of the equivariant asymptotic geometry of successive covering spaces and a plane/halfplane rigidity result for RCD spaces.

Summary

We haven't generated a summary for this paper yet.