Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A complete characterization of graphs for which $m_G(-1) = n-d-1$ (2410.15000v1)

Published 19 Oct 2024 in math.SP

Abstract: Let $G$ be a simple connected graph of order $n$ with diameter $d$. Let $m_G(-1)$ denote the multiplicity of the eigenvalue $-1$ of the adjacency matrix of $G$, and let $P = P_{d+1}$ be the diameter path of $G$. If $-1$ is not an eigenvalue of $P$, then by the interlacing theorem, we have $m_G(-1)\leq n - d - 1$. In this article, we characterize the extremal graphs where equality holds. Moreover, for the completeness of the results, we also characterize the graphs $G$ that achieve $m_G(-1) = n - d - 1$ when $-1$ is an eigenvalue of $P$. Thus, we provide a complete characterization of the graphs $G$ for which $m_G(-1) = n - d - 1$.

Summary

We haven't generated a summary for this paper yet.