Thomas-Fermi Limit for the Cubic-quintic Schrödinger Energy with Radial Potential (2410.14300v1)
Abstract: In this paper, we consider the cubic-quintic Schr\"{o}dinger energy function with radial trapping potential \begin{gather*} \begin{aligned} {E}(\varPhi)=\frac{1}{2}\int_{\mathbb{R}d}\left(|\nabla \varPhi|2+V(x)|\varPhi|2\right)\,dx +\frac{\kappa}{4}\int_{\mathbb{R}d}|\varPhi|4\,dx +\frac{1}{6}\int_{\mathbb{R}d}|\varPhi|6\,dx, \end{aligned} \end{gather*} where $d=1,2,3$ and the parameter $\kappa=\pm1$. We mainly focus on the ground state under the mass constraint $\int_{\mathbb{R}d}|\varPhi|2\,dx=N$, in the Thomas-Fermi limit where the particle number $N$ tends to $\infty$. In contrast to previous approaches, we utilize an \emph{energy method} to go beyond the classical Thomas-Fermi approximation used in the Gross-Pitaevskii energy functional or Ginzburg-Landau functional. Firstly, we show that the ground state has the limit behaviors as $N\to+\infty$, which corresponds to a Thomas-Fermi limit. The limit profile is given by the Thomas-Fermi minimizer $u{TF}(x)=\left[\mu{TF}-C_0|x|p\right]{\frac{1}{4}}_{+}$, where $\mu{TF}$ is a suitable Lagrange multiplier with exact value. Moreover, we obtain a sharp vanishing rate for ground states $\varphi_N$ that $|\varphi_{N}|{L{\infty}(\mathbb{R}d)}\sim N{-\frac{d}{2d+p}}$ as $N\to+\infty$. The gradient squared non-integrable property of the Thomas-Fermi minimizer at the boundary $\partial B(\sqrt[p]{\mu{TF}/C_0})$, in the vicinity of which the ground state has irregular behavior in the form of a steep \emph{corner layer}. Finally, let $\tau=N{-\frac{2}{2d+p}}$ ($\to0+$ as $N\to+\infty$), we prove that $\left|\tau{-d/2}\varphi{N}(\cdot/{\tau})-u{TF}\right|_{L\infty}\leq O\left( \tau{\sigma-\epsilon}|\ln \tau|{-\epsilon}\right)$ in $B\left( \sqrt[p]{\mu{TF}/C_0}-\left( \tau|\ln \tau|\right)\epsilon\right)$ as $\tau\to0+$, where $\sigma=\min{p-\alpha,1}$ and $0<\epsilon\leq\sigma/2$.