Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed ideals of operators on the Baernstein and Schreier spaces (2410.12666v1)

Published 16 Oct 2024 in math.FA

Abstract: We study the lattice of closed ideals of bounded operators on two families of Banach spaces: the Baernstein spaces $B_p$ for $1<p<\infty$ and the Schreier spaces $S_p$ for $1\le p<\infty$. Our main conclusion is that there are $2{\mathfrak{c}}$ many closed ideals that lie between the ideals of compact and strictly singular operators on each of these spaces, and also $2{\mathfrak{c}}$ many closed ideals that contain projections of infinite rank. Counterparts of results of Gasparis and Leung using a numerical index to distinguish the isomorphism types of subspaces spanned by subsequences of the unit vector basis for the higher-order Schreier spaces play a key role in the proofs, as does the Johnson-Schechtman technique for constructing $2{\mathfrak{c}}$ many closed ideals of operators on a Banach space.

Summary

We haven't generated a summary for this paper yet.