Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation (2410.12542v1)

Published 16 Oct 2024 in eess.IV, cs.CV, and cs.LG

Abstract: The scarcity of publicly available medical imaging data limits the development of effective AI models. This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images, focusing on CT scans with lung nodules. Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints, enabling the creation of training datasets. We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images. In the first case, models trained solely on synthetic data achieve Dice scores comparable to those trained on real-world data benchmarks. In the second case, augmenting real-world data with synthetic images significantly improves segmentation performance. The generated images demonstrate their potential to enhance medical image datasets in scenarios with limited real-world data.

Summary

We haven't generated a summary for this paper yet.