Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Neural Samplers with Reverse Diffusive KL Divergence (2410.12456v2)

Published 16 Oct 2024 in cs.LG and stat.ML

Abstract: Training generative models to sample from unnormalized density functions is an important and challenging task in machine learning. Traditional training methods often rely on the reverse Kullback-Leibler (KL) divergence due to its tractability. However, the mode-seeking behavior of reverse KL hinders effective approximation of multi-modal target distributions. To address this, we propose to minimize the reverse KL along diffusion trajectories of both model and target densities. We refer to this objective as the reverse diffusive KL divergence, which allows the model to capture multiple modes. Leveraging this objective, we train neural samplers that can efficiently generate samples from the target distribution in one step. We demonstrate that our method enhances sampling performance across various Boltzmann distributions, including both synthetic multi-modal densities and n-body particle systems.

Summary

We haven't generated a summary for this paper yet.