Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sums of Fourier coefficients involving theta series and Dirichlet characters (2410.12305v1)

Published 16 Oct 2024 in math.NT

Abstract: Let $f$ be a holomorphic or Maass cusp forms for $ \rm SL_2(\mathbb{Z})$ with normalized Fourier coefficients $\lambda_f(n)$ and \bna r_{\ell}(n)=#\left{(n_1,\cdots,n_{\ell})\in \mathbb{Z}2:n_12+\cdots+n_{\ell}2=n\right}. \ena Let $\chi$ be a primitive Dirichlet character of modulus $p$, a prime. In this paper, we are concerned with obtaining nontrivial estimates for the sum \bna \sum_{n\geq1}\lambda_f(n)r_{\ell}(n)\chi(n)w\left(\frac{n}{X}\right) \ena for any $\ell \geq 3$, where $w(x)$ be a smooth function compactly supported in $[1/2,1]$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com