Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concept-Reversed Winograd Schema Challenge: Evaluating and Improving Robust Reasoning in Large Language Models via Abstraction (2410.12040v1)

Published 15 Oct 2024 in cs.CL and cs.AI

Abstract: While LLMs have showcased remarkable proficiency in reasoning, there is still a concern about hallucinations and unreliable reasoning issues due to semantic associations and superficial logical chains. To evaluate the extent to which LLMs perform robust reasoning instead of relying on superficial logical chains, we propose a new evaluation dataset, the Concept-Reversed Winograd Schema Challenge (CR-WSC), based on the famous Winograd Schema Challenge (WSC) dataset. By simply reversing the concepts to those that are more associated with the wrong answer, we find that the performance of LLMs drops significantly despite the rationale of reasoning remaining the same. Furthermore, we propose Abstraction-of-Thought (AoT), a novel prompt method for recovering adversarial cases to normal cases using conceptual abstraction to improve LLMs' robustness and consistency in reasoning, as demonstrated by experiments on CR-WSC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.