Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Multisource Remote Sensing Image Matching Method Utilizing Attention and Feature Enhancement Against Noise Interference (2410.11848v1)

Published 1 Oct 2024 in cs.CV, cs.LG, and stat.ML

Abstract: Image matching is a fundamental and critical task of multisource remote sensing image applications. However, remote sensing images are susceptible to various noises. Accordingly, how to effectively achieve accurate matching in noise images is a challenging problem. To solve this issue, we propose a robust multisource remote sensing image matching method utilizing attention and feature enhancement against noise interference. In the first stage, we combine deep convolution with the attention mechanism of transformer to perform dense feature extraction, constructing feature descriptors with higher discriminability and robustness. Subsequently, we employ a coarse-to-fine matching strategy to achieve dense matches. In the second stage, we introduce an outlier removal network based on a binary classification mechanism, which can establish effective and geometrically consistent correspondences between images; through weighting for each correspondence, inliers vs. outliers classification are performed, as well as removing outliers from dense matches. Ultimately, we can accomplish more efficient and accurate matches. To validate the performance of the proposed method, we conduct experiments using multisource remote sensing image datasets for comparison with other state-of-the-art methods under different scenarios, including noise-free, additive random noise, and periodic stripe noise. Comparative results indicate that the proposed method has a more well-balanced performance and robustness. The proposed method contributes a valuable reference for solving the difficult problem of noise image matching.

Summary

We haven't generated a summary for this paper yet.