Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregation Trees (2410.11408v1)

Published 15 Oct 2024 in econ.EM

Abstract: Uncovering the heterogeneous effects of particular policies or "treatments" is a key concern for researchers and policymakers. A common approach is to report average treatment effects across subgroups based on observable covariates. However, the choice of subgroups is crucial as it poses the risk of $p$-hacking and requires balancing interpretability with granularity. This paper proposes a nonparametric approach to construct heterogeneous subgroups. The approach enables a flexible exploration of the trade-off between interpretability and the discovery of more granular heterogeneity by constructing a sequence of nested groupings, each with an optimality property. By integrating our approach with "honesty" and debiased machine learning, we provide valid inference about the average treatment effect of each group. We validate the proposed methodology through an empirical Monte-Carlo study and apply it to revisit the impact of maternal smoking on birth weight, revealing systematic heterogeneity driven by parental and birth-related characteristics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com