Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetries of Vanishing Nonlinear Love Numbers of Schwarzschild Black Holes (2410.10952v3)

Published 14 Oct 2024 in gr-qc, astro-ph.HE, and hep-th

Abstract: The tidal Love numbers parametrize the conservative induced tidal response of self-gravitating objects. It is well established that asymptotically-flat black holes in four-dimensional general relativity have vanishing Love numbers. In linear perturbation theory, this result was shown to be a consequence of ladder symmetries acting on black hole perturbations. In this work, we show that a black hole's tidal response induced by a static, parity-even tidal field vanishes for all multipoles to all orders in perturbation theory. Our strategy is to focus on static and axisymmetric spacetimes for which the dimensional reduction to the fully nonlinear Weyl solution is well-known. We define the nonlinear Love numbers using the point-particle effective field theory, matching with the Weyl solution to show that an infinite subset of the static, parity-even Love number couplings vanish, to all orders in perturbation theory. This conclusion holds even if the tidal field deviates from axisymmetry. Lastly, we discuss the symmetries underlying the vanishing of the nonlinear Love numbers. An $\mathfrak{sl}(2,\mathbb R)$ algebra acting on a covariantly-defined potential furnishes ladder symmetries analogous to those in linear theory. This is because the dynamics of the potential are isomorphic to those of a static, massless scalar on a Schwarzschild background. We comment on the connection between the ladder symmetries and the Geroch group that is well-known to arise from dimensional reduction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. S. Chandrasekhar, The mathematical theory of black holes. 1985.
  2. W. Israel, “Event horizons in static vacuum space-times,” Phys. Rev. 164 (1967) 1776–1779.
  3. B. Carter, “Global structure of the Kerr family of gravitational fields,” Phys. Rev. 174 (1968) 1559–1571.
  4. B. Carter, “Axisymmetric Black Hole Has Only Two Degrees of Freedom,” Phys. Rev. Lett. 26 (1971) 331–333.
  5. R. M. Wald, “Final states of gravitational collapse,” Phys. Rev. Lett. 26 (1971) 1653–1655.
  6. J. B. Hartle, “Long-range neutrino forces exerted by kerr black holes,” Phys. Rev. D 3 (1971) 2938–2940.
  7. J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D 5 (1972) 1239–1246.
  8. E. D. Fackerell and J. R. Ipser, “Weak electromagnetic fields around a rotating black hole,” Phys. Rev. D 5 (1972) 2455–2458.
  9. R. H. Price, “Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields,” Phys. Rev. D 5 (1972) 2439–2454.
  10. J. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D 51 no. 12, (1995) 6608.
  11. L. Hui and A. Nicolis, “No-Hair Theorem for the Galileon,” Phys. Rev. Lett. 110 (2013) 241104, arXiv:1202.1296 [hep-th].
  12. H. Fang and G. Lovelace, “Tidal coupling of a Schwarzschild black hole and circularly orbiting moon,” Phys. Rev. D 72 (2005) 124016, arXiv:gr-qc/0505156.
  13. T. Damour and A. Nagar, “Relativistic tidal properties of neutron stars,” Phys. Rev. D 80 (2009) 084035, arXiv:0906.0096 [gr-qc].
  14. T. Binnington and E. Poisson, “Relativistic theory of tidal Love numbers,” Phys. Rev. D 80 (2009) 084018, arXiv:0906.1366 [gr-qc].
  15. W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” Phys. Rev. D 73 (2006) 104029, arXiv:hep-th/0409156.
  16. W. D. Goldberger and I. Z. Rothstein, “Dissipative effects in the worldline approach to black hole dynamics,” Phys. Rev. D 73 (2006) 104030, arXiv:hep-th/0511133.
  17. B. Kol and M. Smolkin, “Black hole stereotyping: Induced gravito-static polarization,” JHEP 02 (2012) 010, arXiv:1110.3764 [hep-th].
  18. N. Gürlebeck, “No-hair theorem for Black Holes in Astrophysical Environments,” Phys. Rev. Lett. 114 no. 15, (2015) 151102, arXiv:1503.03240 [gr-qc].
  19. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Static response and Love numbers of Schwarzschild black holes,” JCAP 04 (2021) 052, arXiv:2010.00593 [hep-th].
  20. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Ladder symmetries of black holes. Implications for love numbers and no-hair theorems,” JCAP 01 no. 01, (2022) 032, arXiv:2105.01069 [hep-th].
  21. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Near-zone symmetries of Kerr black holes,” JHEP 09 (2022) 049, arXiv:2203.08832 [hep-th].
  22. M. Rai and L. Santoni, “Ladder symmetries and Love numbers of Reissner-Nordström black holes,” JHEP 07 (2024) 098, arXiv:2404.06544 [gr-qc].
  23. A. Le Tiec and M. Casals, “Spinning Black Holes Fall in Love,” Phys. Rev. Lett. 126 no. 13, (2021) 131102, arXiv:2007.00214 [gr-qc].
  24. A. Le Tiec, M. Casals, and E. Franzin, “Tidal Love Numbers of Kerr Black Holes,” Phys. Rev. D 103 no. 8, (2021) 084021, arXiv:2010.15795 [gr-qc].
  25. P. Charalambous, S. Dubovsky, and M. M. Ivanov, “On the Vanishing of Love Numbers for Kerr Black Holes,” JHEP 05 (2021) 038, arXiv:2102.08917 [hep-th].
  26. M. J. Rodriguez, L. Santoni, A. R. Solomon, and L. F. Temoche, “Love numbers for rotating black holes in higher dimensions,” Phys. Rev. D 108 no. 8, (2023) 084011, arXiv:2304.03743 [hep-th].
  27. W. D. Goldberger and I. Z. Rothstein, “Towers of Gravitational Theories,” Gen. Rel. Grav. 38 (2006) 1537–1546, arXiv:hep-th/0605238.
  28. I. Z. Rothstein, “Progress in effective field theory approach to the binary inspiral problem,” Gen. Rel. Grav. 46 (2014) 1726.
  29. R. A. Porto, “The effective field theorist’s approach to gravitational dynamics,” Phys. Rept. 633 (2016) 1–104, arXiv:1601.04914 [hep-th].
  30. M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive review,” Rept. Prog. Phys. 83 no. 7, (2020) 075901, arXiv:1807.01699 [hep-th].
  31. W. D. Goldberger, “Effective field theories of gravity and compact binary dynamics: A Snowmass 2021 whitepaper,” in Snowmass 2021. 6, 2022. arXiv:2206.14249 [hep-th].
  32. W. D. Goldberger, “Effective Field Theory for Compact Binary Dynamics,” arXiv:2212.06677 [hep-th].
  33. R. A. Porto, “The Tune of Love and the Nature(ness) of Spacetime,” Fortsch. Phys. 64 no. 10, (2016) 723–729, arXiv:1606.08895 [gr-qc].
  34. J. Ben Achour, E. R. Livine, S. Mukohyama, and J.-P. Uzan, “Hidden symmetry of the static response of black holes: applications to Love numbers,” JHEP 07 (2022) 112, arXiv:2202.12828 [gr-qc].
  35. R. Berens, L. Hui, and Z. Sun, “Ladder symmetries of black holes and de Sitter space: love numbers and quasinormal modes,” JCAP 06 (2023) 056, arXiv:2212.09367 [hep-th].
  36. P. Charalambous, S. Dubovsky, and M. M. Ivanov, “Hidden Symmetry of Vanishing Love Numbers,” Phys. Rev. Lett. 127 no. 10, (2021) 101101, arXiv:2103.01234 [hep-th].
  37. P. Charalambous, S. Dubovsky, and M. M. Ivanov, “Love symmetry,” JHEP 10 (2022) 175, arXiv:2209.02091 [hep-th].
  38. A. R. Solomon, “Off-Shell Duality Invariance of Schwarzschild Perturbation Theory,” Particles 6 no. 4, (2023) 943–974, arXiv:2310.04502 [gr-qc].
  39. E. Poisson, “Compact body in a tidal environment: New types of relativistic Love numbers, and a post-Newtonian operational definition for tidally induced multipole moments,” Phys. Rev. D 103 no. 6, (2021) 064023, arXiv:2012.10184 [gr-qc].
  40. E. Poisson, “Tidally induced multipole moments of a nonrotating black hole vanish to all post-Newtonian orders,” Phys. Rev. D 104 no. 10, (2021) 104062, arXiv:2108.07328 [gr-qc].
  41. M. M. Riva, L. Santoni, N. Savić, and F. Vernizzi, “Vanishing of nonlinear tidal Love numbers of Schwarzschild black holes,” Phys. Lett. B 854 (2024) 138710, arXiv:2312.05065 [gr-qc].
  42. S. Iteanu, M. M. Riva, L. Santoni, N. Savić, and F. Vernizzi, “Vanishing of Quadratic Love Numbers of Schwarzschild Black Holes,” arXiv:2410.03542 [gr-qc].
  43. V. De Luca, J. Khoury, and S. S. C. Wong, “Nonlinearities in the tidal Love numbers of black holes,” Phys. Rev. D 108 no. 2, (2023) 024048, arXiv:2305.14444 [gr-qc].
  44. M. Perry and M. J. Rodriguez, “Dynamical Love Numbers for Kerr Black Holes,” arXiv:2310.03660 [gr-qc].
  45. J. B. Griffiths and J. Podolsky, Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2009.
  46. P. K. Townsend, “Black holes: Lecture notes,” arXiv:gr-qc/9707012.
  47. H. Weyl, “The theory of gravitation,” Annalen Phys. 54 (1917) 117–145.
  48. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 2003.
  49. C. Barceló, R. Carballo-Rubio, L. J. Garay, and G. García-Moreno, “No-hair and almost-no-hair results for static axisymmetric black holes and ultracompact objects in astrophysical environments,” arXiv:2410.08128 [gr-qc].
  50. N. Gürlebeck, “Source integrals of asymptotic multipole moments,” Springer Proc. Phys. 157 (2014) 83–90, arXiv:1302.7234 [gr-qc].
  51. R. P. Geroch, “Multipole moments. I. Flat space,” J. Math. Phys. 11 (1970) 1955–1961.
  52. R. P. Geroch, “Multipole moments. II. Curved space,” J. Math. Phys. 11 (1970) 2580–2588.
  53. R. O. Hansen, “Multipole moments of stationary space-times,” J. Math. Phys. 15 (1974) 46–52.
  54. D. R. Mayerson, “Gravitational multipoles in general stationary spacetimes,” SciPost Phys. 15 no. 4, (2023) 154, arXiv:2210.05687 [gr-qc].
  55. Z. Bern, J. Parra-Martinez, R. Roiban, E. Sawyer, and C.-H. Shen, “Leading Nonlinear Tidal Effects and Scattering Amplitudes,” JHEP 05 (2021) 188, arXiv:2010.08559 [hep-th].
  56. J. Ehlers, “Konstruktionen und Charakterisierung von Losungen der Einsteinschen Gravitationsfeldgleichungen,” other thesis, 1957.
  57. R. P. Geroch, “A Method for generating solutions of Einstein’s equations,” J. Math. Phys. 12 (1971) 918–924.
  58. P. Breitenlohner and D. Maison, “On the Geroch Group,” Ann. Inst. H. Poincare Phys. Theor. 46 (1987) 215.
  59. D. Maison, “Duality and hidden symmetries in gravitational theories,” Lect. Notes Phys. 540 (2000) 273–323.
  60. H. Lu, M. J. Perry, and C. N. Pope, “Infinite-dimensional symmetries of two-dimensional coset models,” arXiv:0711.0400 [hep-th].
  61. H. Lu, M. J. Perry, and C. N. Pope, “Infinite-dimensional symmetries of two-dimensional coset models coupled to gravity,” Nucl. Phys. B 806 (2009) 656–683, arXiv:0712.0615 [hep-th].
  62. D. Maison, “Are the stationary, axially symmetric Einstein equations completely integrable?,” Phys. Rev. Lett. 41 (1978) 521.
  63. J. H. Schwarz, “Classical symmetries of some two-dimensional models,” Nucl. Phys. B 447 (1995) 137–182, arXiv:hep-th/9503078.
  64. J. H. Schwarz, “Classical symmetries of some two-dimensional models coupled to gravity,” Nucl. Phys. B 454 (1995) 427–448, arXiv:hep-th/9506076.
  65. A. Riotto and A. Kehagias, “Black holes in a gravitational field: The non-linear static love number of schwarzschild black holes vanishes,”.
  66. R. P. Geroch and J. B. Hartle, “Distorted black holes,” J. Math. Phys. 23 (1982) 680.
  67. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984.
  68. T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.
  69. S. Foffa and R. Sturani, “Effective field theory methods to model compact binaries,” Class. Quant. Grav. 31 no. 4, (2014) 043001, arXiv:1309.3474 [gr-qc].
  70. W. D. Goldberger, J. Li, and I. Z. Rothstein, “Non-conservative effects on spinning black holes from world-line effective field theory,” JHEP 06 (2021) 053, arXiv:2012.14869 [hep-th].
  71. M. M. Ivanov and Z. Zhou, “Revisiting the matching of black hole tidal responses: A systematic study of relativistic and logarithmic corrections,” Phys. Rev. D 107 no. 8, (2023) 084030, arXiv:2208.08459 [hep-th].
  72. T. Hadad, B. Kol, and M. Smolkin, “Gravito-magnetic polarization of Schwarzschild black hole,” JHEP 06 (2024) 169, arXiv:2402.16172 [hep-th].
  73. G. S. He, Nonlinear Optics and Photonics. Oxford University Press, 10, 2014. https://doi.org/10.1093/acprof:oso/9780198702764.001.0001.
  74. M. V. S. Saketh, Z. Zhou, and M. M. Ivanov, “Dynamical tidal response of Kerr black holes from scattering amplitudes,” Phys. Rev. D 109 no. 6, (2024) 064058, arXiv:2307.10391 [hep-th].
  75. K. Haddad and A. Helset, “Tidal effects in quantum field theory,” JHEP 12 (2020) 024, arXiv:2008.04920 [hep-th].
  76. Cambridge University Press, 2014.
  77. G. Compton and I. A. Morrison, “Hidden symmetries for transparent de Sitter space,” Class. Quant. Grav. 37 no. 12, (2020) 125001, arXiv:2003.08023 [gr-qc].
  78. D. Katsimpouri, A. Kleinschmidt, and A. Virmani, “Inverse Scattering and the Geroch Group,” JHEP 02 (2013) 011, arXiv:1211.3044 [hep-th].
  79. D. Katsimpouri, Integrability in two-dimensional gravity. PhD thesis, Humboldt U., Berlin, 2015.
  80. G. L. Cardoso and J. C. Serra, “New gravitational solutions via a Riemann-Hilbert approach,” JHEP 03 (2018) 080, arXiv:1711.01113 [hep-th].
  81. T. Hinderer, “Tidal Love numbers of neutron stars,” Astrophys. J. 677 (2008) 1216–1220, arXiv:0711.2420 [astro-ph].
  82. N. Gurlebeck, “Source integrals for multipole moments in static and axially symmetric spacetimes,” Phys. Rev. D 90 no. 2, (2014) 024041, arXiv:1207.4500 [gr-qc].
Citations (1)

Summary

We haven't generated a summary for this paper yet.