Quantitative recurrence properties and strong dynamical Borel-Cantelli lemma for dynamical systems with exponential decay of correlations (2410.10211v1)
Abstract: Let $ ([0,1]d,T,\mu) $ be a measure-preserving dynamical system so that the correlations decay exponentially for H\"older continuous functions. Suppose that $ \mu $ is absolutely continuous with a density function $ h\in Lq(\mathcal Ld) $ for some $ q>1 $, where $ \mathcal Ld $ is the $ d $-dimensional Lebesgue measure. Under mild conditions on the underlying dynamical system, we obtain a strong dynamical Borel-Cantelli lemma for recurrence: For any sequence $ {R_n} $ of hyperrectangles with sides parallel to the axes and centered at the origin, [\sum_{n=1}{\infty}\mathcal Ld(R_n)=\infty\quad\Longrightarrow\quad\lim_{n\to\infty}\frac{\sum_{k=1}{n}\chi_{R_k+\mathbf{x}}(Tk\mathbf{x})}{\sum_{k=1}{n}\mathcal Ld(R_k)}=h(\mathbf{x})\quad\text{for $ \mu $-a.e.$\textbf{x}$},] where $ \textbf{x}\in[0,1]d $ and $ R_k+\textbf{x} $ is the translation of $ R_k $. The result applies to Gauss map, $\beta$-transformation and expanding toral endomorphisms.