Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gain Cell-Based Analog Content Addressable Memory for Dynamic Associative tasks in AI (2410.09755v1)

Published 13 Oct 2024 in cs.ET

Abstract: Analog Content Addressable Memories (aCAMs) have proven useful for associative in-memory computing applications like Decision Trees, Finite State Machines, and Hyper-dimensional Computing. While non-volatile implementations using FeFETs and ReRAM devices offer speed, power, and area advantages, they suffer from slow write speeds and limited write cycles, making them less suitable for computations involving fully dynamic data patterns. To address these limitations, in this work, we propose a capacitor gain cell-based aCAM designed for dynamic processing, where frequent memory updates are required. Our system compares analog input voltages to boundaries stored in capacitors, enabling efficient dynamic tasks. We demonstrate the application of aCAM within transformer attention mechanisms by replacing the softmax-scaled dot-product similarity with aCAM similarity, achieving competitive results. Circuit simulations on a TSMC 28 nm node show promising performance in terms of energy efficiency, precision, and latency, making it well-suited for fast, dynamic AI applications.

Summary

We haven't generated a summary for this paper yet.