Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced physics-informed neural networks (PINNs) for high-order power grid dynamics (2410.07527v1)

Published 10 Oct 2024 in cs.LG, cs.SY, and eess.SY

Abstract: We develop improved physics-informed neural networks (PINNs) for high-order and high-dimensional power system models described by nonlinear ordinary differential equations. We propose some novel enhancements to improve PINN training and accuracy and also implement several other recently proposed ideas from the literature. We successfully apply these to study the transient dynamics of synchronous generators. We also make progress towards applying PINNs to advanced inverter models. Such enhanced PINNs can allow us to accelerate high-fidelity simulations needed to ensure a stable and reliable renewables-rich future grid.

Summary

We haven't generated a summary for this paper yet.