2000 character limit reached
Computation of harmonic functions on higher genus surfaces (2410.06763v1)
Published 9 Oct 2024 in math.NA, cs.NA, and math.AP
Abstract: We introduce a method to compute efficiently and with arbitrary precision a basis of harmonic functions with prescribed singularities on a general compact surface of genus two and more. This basis is obtained as a composition of theta functions and the Abel-Jacobi map, which is approximated at spectral speed by complex polynomials. We then implement this method to compute harmonic extensions on genus $2$ surfaces with boundary, that are described by their Fenchel-Nielsen coordinates and a smooth parametrization of the boundary. Finally, we prove the spectral convergence of the method for the harmonic extension.