Existence of normalized ground state solution to a mixed Schrödinger system in a plane (2410.05965v1)
Abstract: In this paper, we establish the existence of positive ground state solutions for a class of mixed Schr\"{o}dinger systems with concave-convex nonlinearities in $\mathbb{R}2$, subject to $L2$-norm constraints; that is, [ \left{ \begin{aligned} -\partial_{xx} u + (-\Delta)ys u + \lambda_1 u &= \mu_1 u{p-1} + \beta r_1 u{r_1-1} v{r_2}, && -\partial{xx} v + (-\Delta)ys v + \lambda_2 v &= \mu_2 v{q-1} + \beta r_2 u{r_1} v{r_2-1}, && \end{aligned} \right. ] subject to the $L2$-norm constraints: [ \int{\mathbb{R}2} u2 \,\mathrm{d}x\mathrm{d}y = a \quad \text{and} \quad \int_{\mathbb{R}2} v2 \,\mathrm{d}x\mathrm{d}y = b, ] where $(x,y)\in \mathbb{R}2$, $u, v \geq 0$, $s \in \left(1/2, 1 \right)$, $\mu_1, \mu_2, \beta > 0$, $r_1, r_2 > 1$, the prescribed masses $a, b > 0$, and the parameters $\lambda_1, \lambda_2$ appear as Lagrange multipliers. Moreover, the exponents $p, q, r_1 + r_2$ satisfy: [ \frac{2(1+3s)}{1+s} < p, q, r_1 + r_2 < 2_s, ] where $2_s = \frac{2(1+s)}{1-s}$. To obtain our main existence results, we employ variational techniques such as the Mountain Pass Theorem, the Pohozaev manifold, Steiner rearrangement, and others, consolidating the works of Louis Jeanjean et al. \cite{jeanjean2024normalized}.