Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of normalized ground state solution to a mixed Schrödinger system in a plane (2410.05965v1)

Published 8 Oct 2024 in math.AP

Abstract: In this paper, we establish the existence of positive ground state solutions for a class of mixed Schr\"{o}dinger systems with concave-convex nonlinearities in $\mathbb{R}2$, subject to $L2$-norm constraints; that is, [ \left{ \begin{aligned} -\partial_{xx} u + (-\Delta)ys u + \lambda_1 u &= \mu_1 u{p-1} + \beta r_1 u{r_1-1} v{r_2}, && -\partial{xx} v + (-\Delta)ys v + \lambda_2 v &= \mu_2 v{q-1} + \beta r_2 u{r_1} v{r_2-1}, && \end{aligned} \right. ] subject to the $L2$-norm constraints: [ \int{\mathbb{R}2} u2 \,\mathrm{d}x\mathrm{d}y = a \quad \text{and} \quad \int_{\mathbb{R}2} v2 \,\mathrm{d}x\mathrm{d}y = b, ] where $(x,y)\in \mathbb{R}2$, $u, v \geq 0$, $s \in \left(1/2, 1 \right)$, $\mu_1, \mu_2, \beta > 0$, $r_1, r_2 > 1$, the prescribed masses $a, b > 0$, and the parameters $\lambda_1, \lambda_2$ appear as Lagrange multipliers. Moreover, the exponents $p, q, r_1 + r_2$ satisfy: [ \frac{2(1+3s)}{1+s} < p, q, r_1 + r_2 < 2_s, ] where $2_s = \frac{2(1+s)}{1-s}$. To obtain our main existence results, we employ variational techniques such as the Mountain Pass Theorem, the Pohozaev manifold, Steiner rearrangement, and others, consolidating the works of Louis Jeanjean et al. \cite{jeanjean2024normalized}.

Summary

We haven't generated a summary for this paper yet.