Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions (2410.05861v1)
Abstract: Forecasting risk (as measured by quantiles) and systemic risk (as measured by Adrian and Brunnermeiers's (2016) CoVaR) is important in economics and finance. However, past research has shown that predictive relationships may be unstable over time. Therefore, this paper develops structural break tests in predictive quantile and CoVaR regressions. These tests can detect changes in the forecasting power of covariates, and are based on the principle of self-normalization. We show that our tests are valid irrespective of whether the predictors are stationary or near-stationary, rendering the tests suitable for a range of practical applications. Simulations illustrate the good finite-sample properties of our tests. Two empirical applications concerning equity premium and systemic risk forecasting models show the usefulness of the tests.