Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Extreme-PLS (2410.05517v1)

Published 7 Oct 2024 in math.ST and stat.TH

Abstract: We propose an extreme dimension reduction method extending the Extreme-PLS approach to the case where the covariate lies in a possibly infinite-dimensional Hilbert space. The ideas are partly borrowed from both Partial Least-Squares and Sliced Inverse Regression techniques. As such, the method relies on the projection of the covariate onto a subspace and maximizes the covariance between its projection and the response conditionally to an extreme event driven by a random threshold to capture the tail-information. The covariate and the heavy-tailed response are supposed to be linked through a non-linear inverse single-index model and our goal is to infer the index in this regression framework. We propose a new family of estimators and show its asymptotic consistency with convergence rates under the model. Assuming mild conditions on the noise, most of the assumptions are stated in terms of regular variation unlike the standard literature on SIR and single-index regression. Finally, our results are illustrated on a finite-sample study with synthetic functional data as well as on real data from the financial realm, highlighting the effectiveness of the dimension reduction for estimating extreme risk measures.

Summary

We haven't generated a summary for this paper yet.