Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint cubic moment of Eisenstein series and Hecke-Maass cusp forms (2410.04448v2)

Published 6 Oct 2024 in math.NT

Abstract: Let $F(z), G(z)$ be Hecke-Maass cusp forms or Eisenstein series and $\psi$ is a smooth compactly supported function on X = SL(2,Z)\H. In this paper, we are interested in the asymptotic behavior of joint moment like $\int_{X}\psi(z) F(z){a_1}G(z){a_2}d\mu z $ when the spectral parameters go to infinity with nonnegative integers $a_{1}+a_{2} = 3$. We show that the diagonal case $\int_{X}\psi(z)E_{t}(z){3} d\mu z = O_{\psi}(t{-1/3+\varepsilon})$. In nondiagonal case we show $\int_{\mathbb{X}}\psi(z)f{2}(z)g(z)d\mu z = o(1)$ in the range $|t_{f} - t_{g}| \leq t_{f}{2/3-\omega}$, a power saving upper bound of $\frac{1}{2\log t}\int_{X}\psi(z)|E_{t}(z)|{2}g(z)d\mu z$ in the range $t_{g} \geq 2t{\varepsilon{\prime}}$ for any $\varepsilon{\prime} >0 $ and an explicit formula when $t_{g} \leq 2t{\varepsilon{\prime}}$ which will asymptotically vanish under GRH and GRC.

Summary

We haven't generated a summary for this paper yet.