Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive Monitoring of Air Pollution Hotspots Using Sparse Sensor Networks (2410.04309v3)

Published 5 Oct 2024 in cs.CY and cs.LG

Abstract: Urban air pollution hotspots pose significant health risks, yet their detection and analysis remain limited by the sparsity of public sensor networks. This paper addresses this challenge by combining predictive modeling and mechanistic approaches to comprehensively monitor pollution hotspots. We enhanced New Delhi's existing sensor network with 28 low-cost sensors, collecting PM2.5 data over 30 months from May 1, 2018, to Nov 1, 2020. Applying established definitions of hotspots to this data, we found the existence of additional 189 hidden hotspots apart from confirming 660 hotspots detected by the public network. Using predictive techniques like Space-Time Kriging, we identified hidden hotspots with 95% precision and 88% recall with 50% sensor failure rate, and with 98% precision and 95% recall with 50% missing sensors. The projected results of our predictive models were further compiled into policy recommendations for public authorities. Additionally, we developed a Gaussian Plume Dispersion Model to understand the mechanistic underpinnings of hotspot formation, incorporating an emissions inventory derived from local sources. Our mechanistic model is able to explain 65% of observed transient hotspots. Our findings underscore the importance of integrating data-driven predictive models with physics-based mechanistic models for scalable and robust air pollution management in resource-constrained settings.

Summary

We haven't generated a summary for this paper yet.