Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeuralQP: A General Hypergraph-based Optimization Framework for Large-scale QCQPs (2410.03720v1)

Published 28 Sep 2024 in math.OC and cs.LG

Abstract: Machine Learning (ML) optimization frameworks have gained attention for their ability to accelerate the optimization of large-scale Quadratically Constrained Quadratic Programs (QCQPs) by learning shared problem structures. However, existing ML frameworks often rely heavily on strong problem assumptions and large-scale solvers. This paper introduces NeuralQP, a general hypergraph-based framework for large-scale QCQPs. NeuralQP features two main components: Hypergraph-based Neural Prediction, which generates embeddings and predicted solutions for QCQPs without problem assumptions, and Parallel Neighborhood Optimization, which employs a McCormick relaxation-based repair strategy to identify and correct illegal variables, iteratively improving the solution with a small-scale solver. We further prove that our framework UniEGNN with our hypergraph representation is equivalent to the Interior-Point Method (IPM) for quadratic programming. Experiments on two benchmark problems and large-scale real-world instances from QPLIB demonstrate that NeuralQP outperforms state-of-the-art solvers (e.g., Gurobi and SCIP) in both solution quality and time efficiency, further validating the efficiency of ML optimization frameworks for QCQPs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.