Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entangling power of symmetric multiqubit systems: a geometrical approach (2410.03361v2)

Published 4 Oct 2024 in quant-ph

Abstract: Unitary gates with high entangling capabilities are relevant for several quantum-enhanced technologies. For symmetric multiqubit systems, such as spin states or bosonic systems, the particle exchange symmetry restricts these gates and also the set of not-entangled states. In this work, we analyze the entangling power of unitary gates in these systems by reformulating it as an inner product between vectors with components given by SU$(2)$ invariants. For small number of qubits, this approach allows us to study analytically the entangling power including the detection of the unitary gate that maximizes it. We observe that extremal unitary gates exhibit entanglement distributions with high rotational symmetry, same that are linked to a convex combination of Husimi functions of certain states. Furthermore, we explore the connection between entangling power and the Schmidt numbers admissible in some quantum state subspaces. Thus, the geometrical approach presented here suggests new paths for studying entangling power linked to other concepts in quantum information theory.

Summary

We haven't generated a summary for this paper yet.