Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Instance-Level Difficulty: A Missing Perspective in Machine Unlearning (2410.03043v2)

Published 3 Oct 2024 in cs.LG

Abstract: Current research on deep machine unlearning primarily focuses on improving or evaluating the overall effectiveness of unlearning methods while overlooking the varying difficulty of unlearning individual training samples. As a result, the broader feasibility of machine unlearning remains under-explored. This paper studies the cruxes that make machine unlearning difficult through a thorough instance-level unlearning performance analysis over various unlearning algorithms and datasets. In particular, we summarize four factors that make unlearning a data point difficult, and we empirically show that these factors are independent of a specific unlearning algorithm but only relevant to the target model and its training data. Given these findings, we argue that machine unlearning research should pay attention to the instance-level difficulty of unlearning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.