Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Ehrhart $h^*$-polynomials of positroid polytopes (2410.01743v3)

Published 2 Oct 2024 in math.CO

Abstract: A positroid is a matroid realized by a matrix such that all maximal minors are non-negative. Positroid polytopes are matroid polytopes of positroids. In particular, they are lattice polytopes. The Ehrhart polynomial of a lattice polytope counts the number of integer points in the dilation of that polytope. The Ehrhart series is the generating function of the Ehrhart polynomial, a rational function with a numerator called the $h*$-polynomial. We give explicit formulas for the $h*$-polynomials of an arbitrary positroid polytope regarding permutation descents. Our result generalizes that of Early, Kim, and Li for hypersimplices.

Summary

We haven't generated a summary for this paper yet.