Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedPT: Federated Proxy-Tuning of Large Language Models on Resource-Constrained Edge Devices (2410.00362v1)

Published 1 Oct 2024 in cs.CL and cs.AI

Abstract: Despite demonstrating superior performance across a variety of linguistic tasks, pre-trained LLMs (LMs) often require fine-tuning on specific datasets to effectively address different downstream tasks. However, fine-tuning these LMs for downstream tasks necessitates collecting data from individuals, which raises significant privacy concerns. Federated learning (FL) has emerged as the de facto solution, enabling collaborative model training without sharing raw data. While promising, federated fine-tuning of large LMs faces significant challenges, including restricted access to model parameters and high computation, communication, and memory overhead. To address these challenges, this paper introduces \textbf{Fed}erated \textbf{P}roxy-\textbf{T}uning (FedPT), a novel framework for federated fine-tuning of black-box large LMs, requiring access only to their predictions over the output vocabulary instead of their parameters. Specifically, devices in FedPT first collaboratively tune a smaller LM, and then the server combines the knowledge learned by the tuned small LM with the knowledge learned by the larger pre-trained LM to construct a large proxy-tuned LM that can reach the performance of directly tuned large LMs. The experimental results demonstrate that FedPT can significantly reduce computation, communication, and memory overhead while maintaining competitive performance compared to directly federated fine-tuning of large LMs. FedPT offers a promising solution for efficient, privacy-preserving fine-tuning of large LMs on resource-constrained devices, broadening the accessibility and applicability of state-of-the-art large LMs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhidong Gao (8 papers)
  2. Yu Zhang (1399 papers)
  3. Zhenxiao Zhang (6 papers)
  4. Yanmin Gong (23 papers)
  5. Yuanxiong Guo (19 papers)