Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Calibration for Prediction in a Multi-Output Transposition Context (2410.00116v3)

Published 30 Sep 2024 in stat.ME, math.ST, and stat.TH

Abstract: Numerical simulations are widely used to predict the behavior of physical systems, with Bayesian approaches being particularly well suited for this purpose. However, experimental observations are necessary to calibrate certain simulator parameters for the prediction. In this work, we use a multi-output simulator to predict all its outputs, including those that have never been experimentally observed. This situation is referred to as the transposition context. To accurately quantify the discrepancy between model outputs and real data in this context, conventional methods cannot be applied, and the Bayesian calibration must be augmented by incorporating a joint model error across all outputs. To achieve this, the proposed method is to consider additional numerical input parameters within a hierarchical Bayesian model, which includes hyperparameters for the prior distribution of the calibration variables. This approach is applied on a computer code with three outputs that models the Taylor cylinder impact test with a small number of observations. The outputs are considered as the observed variables one at a time, to work with three different transposition situations. The proposed method is compared with other approaches that embed model errors to demonstrate the significance of the hierarchical formulation.

Summary

We haven't generated a summary for this paper yet.