Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized convolutional many body distribution functional representations (2409.20471v2)

Published 30 Sep 2024 in physics.chem-ph and physics.comp-ph

Abstract: Modern ML models of chemical and materials systems with billions of parameters require vast training datasets and considerable computational efforts. Lightweight kernel or decision tree based methods, however, can be rapidly trained, leading to a considerably lower carbon footprint. We introduce generalized convolutional many-body distribution functionals (cMBDF) as highly compute and data efficient atomic representations for accurate kernels that excel in low-data regimes. Generalizing the MBDF framework, cMBDF encodes local chemical environments in a compact fashion using translationally and rotationally invariant functionals of smooth atom centered Gaussian electron density proxy distributions weighted by interaction potentials. The functional values can be efficiently evaluated by expressing them in terms of convolutions which are calculated via fast Fourier transforms and stored on pre-defined grids. In the generalized form each atomic environment is described using a set of functionals uniformly defined by three integers; many-body, derivative, weighting orders. Irrespective of size/composition, cMBDF atomic vectors remain compact and constant in size for a fixed choice of these orders controlling the structural and compositional resolution. While being up to two orders of magnitude more compact than other popular representations, cMBDF is shown to be more accurate for the learning of various quantum properties such as energies, dipole moments, homo-lumo gaps, heat-capacity, polarizability, optimal exact-exchange admixtures and basis-set scaling factors. Applicability for organic and inorganic chemistry is tested as represented by the QM7b, QM9 and VQM24 data sets. Due to its compactness, model training and testing times are reduced from 23 hours to 8 minutes, implying a corresponding reduction in carbon footprint.

Summary

We haven't generated a summary for this paper yet.