Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Metric-Semantic Mapping for Persistent Orchard Monitoring: Method and Dataset (2409.19786v3)

Published 29 Sep 2024 in cs.RO

Abstract: Monitoring orchards at the individual tree or fruit level throughout the growth season is crucial for plant phenotyping and horticultural resource optimization, such as chemical use and yield estimation. We present a 4D spatio-temporal metric-semantic mapping system that integrates multi-session measurements to track fruit growth over time. Our approach combines a LiDAR-RGB fusion module for 3D fruit localization with a 4D fruit association method leveraging positional, visual, and topology information for improved data association precision. Evaluated on real orchard data, our method achieves a 96.9% fruit counting accuracy for 1,790 apples across 60 trees, a mean fruit size estimation error of 1.1 cm, and a 23.7% improvement in 4D data association precision over baselines. We publicly release a multimodal dataset covering five fruit species across their growth seasons at https://4d-metric-semantic-mapping.org/

Summary

We haven't generated a summary for this paper yet.