Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morita theory of finite representations of Leavitt path algebras (2409.19677v2)

Published 29 Sep 2024 in math.RT, math.KT, and math.RA

Abstract: The Graded Classification Conjecture states that for finite directed graphs $E$ and $F$, the associated Leavitt path algebras $L_\K(E)$ and $L_\K(F)$ are graded Morita equivalent, i.e., $\Gr L_\K(E) \approx_{\gr} \Gr L_\K(F)$, if and only if, their graded Grothendieck groups are isomorphic $K_0{\gr}(L_\K(E)) \cong K_0{\gr}(L_\K(F))$ as order-preserving $\mathbb Z[x,x{-1}]$-modules. Furthermore, if under this isomorphism, the class $[L_\K(E)]$ is sent to $[L_\K(F)]$ then the algebras are graded isomorphic, i.e., $L_\K(E) \cong {\gr} L\K(F)$. In this note we show that, for finite graphs $E$ and $F$ with so sinks and sources, an order-preserving $\mathbb Z[x,x{-1}]$-module isomorphism $K_0{\gr}(L_\K(E)) \cong K_0{\gr}(L_\K(F))$ gives that the categories of locally finite dimensional graded modules of $L_\K(E)$ and $L_\K(F)$ are equivalent, i.e., $\fGr[\mathbb{Z}] L_\K(E)\approx_{\gr} \fGr[\mathbb{Z}]L_\K(F).$ We further obtain that the category of finite dimensional (graded) modules are equivalent, i.e., $\fModd L_\K(E) \approx \fModd L_\K(F)$ and $\fGr L_\K(E) \approx_{\gr} \fGr L_\K(F)$.

Summary

We haven't generated a summary for this paper yet.