Symmetric Cayley graphs on non-abelian simple groups of valency 7 (2409.19225v2)
Abstract: Let $\Gamma$ be a connected $7$-valent symmetric Cayley graph on a finite non-abelian simple group $G$. If $\Gamma$ is not normal, Li {\em et al.} [On 7-valent symmetric Cayley graphs of finite simple groups, J. Algebraic Combin. 56 (2022) 1097-1118] characterised the group pairs $(\mathrm{soc}(\mathrm{Aut}(\Gamma)/K),GK/K)$, where $K$ is a maximal intransitive normal subgroup of $\mathrm{Aut}(\Gamma)$. In this paper, we improve this result by proving that if $\Gamma$ is not normal, then $\mathrm{Aut}(\Gamma)$ contains an arc-transitive non-abelian simple normal subgroup $T$ such that $G<T$ and $(T,G)=(\mathrm{A}{n},\mathrm{A}{n-1})$ with $n=7$, $3\cdot 7$, $32\cdot 7$, $22\cdot 3\cdot 7$, $23\cdot3\cdot7$, $23\cdot32\cdot5\cdot7$, $24\cdot32\cdot5\cdot7$, $26\cdot3\cdot7$, $27\cdot3\cdot7$, $26\cdot32\cdot7$, $26\cdot34\cdot52\cdot7$, $28\cdot34\cdot52\cdot7$, $27\cdot34\cdot52\cdot7$, $2{10}\cdot32\cdot7$, $2{24}\cdot32\cdot7$. Furthermore, $\mathrm{soc}(\mathrm{Aut}(\Gamma)/R)=(T\times R)/R$, where $R$ is the largest solvable normal subgroup of $\mathrm{Aut}(\Gamma)$.