Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Universes in Homotopy Type Theory (2409.19176v2)

Published 27 Sep 2024 in cs.LO, cs.PL, and math.CT

Abstract: Awodey, later with Newstead, showed how polynomial functors with extra structure (termed ``natural models'') hold within them the categorical semantics for dependent type theory. Their work presented these ideas clearly but ultimately led them outside of the usual category of polynomial functors to a particular \emph{tricategory} of polynomials in order to explain all of the structure possessed by such models. This paper builds off that work -- explicating the categorical semantics of dependent type theory by axiomatizing them entirely in terms of the usual category of polynomial functors. In order to handle the higher-categorical coherences required for such an explanation, we work with polynomial functors in the language of Homotopy Type Theory (HoTT), which allows for higher-dimensional structures to be expressed purely within this category. The move to HoTT moreover enables us to express a key additional condition on polynomial functors -- \emph{univalence} -- which is sufficient to guarantee that models of type theory expressed as univalent polynomials satisfy all higher coherences of their corresponding algebraic structures, purely in virtue of being closed under the usual constructors of dependent type theory. We call polynomial functors satisfying this condition \emph{polynomial universes}. As an example of the simplification to the theory of natural models this enables, we highlight the fact that a polynomial universe being closed under dependent product types implies the existence of a distributive law of monads, which witnesses the usual distributivity of dependent products over dependent sums.

Summary

We haven't generated a summary for this paper yet.