Generative deep learning for the inverse design of materials (2409.19124v1)
Abstract: In addition to the forward inference of materials properties using machine learning, generative deep learning techniques applied on materials science allow the inverse design of materials, i.e., assessing the composition-processing-(micro-)structure-property relationships in a reversed way. In this review, we focus on the (micro-)structure-property mapping, i.e., crystal structure-intrinsic property and microstructure-extrinsic property, and summarize comprehensively how generative deep learning can be performed. Three key elements, i.e., the construction of latent spaces for both the crystal structures and microstructures, generative learning approaches, and property constraints, are discussed in detail. A perspective is given outlining the challenges of the existing methods in terms of computational resource consumption, data compatibility, and yield of generation.