Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Subsystem entropy in 2d CFT and KdV ETH (2409.19046v1)

Published 27 Sep 2024 in hep-th and quant-ph

Abstract: We study subsystem entropy in 2d CFTs, for subsystems constituting a finite fraction of the full system. We focus on the extensive contribution, which scales linearly with the subsystem size in the thermodynamic limit. We employ the so-called diagonal approximation to evaluate subsystem entropy for the chaotic CFTs in thermal state (canonical ensemble), microcanonical ensemble, and in a primary state, matching previously known results. We then proceed to find analytic expressions for the subsystem entropy at leading order in $c$, when the global CFT state is the KdV generalized Gibbs ensemble or the KdV microcanonical ensemble. Previous studies of primary eigenstates have shown that, akin to fixed-area states in AdS/CFT, corresponding subsystem entanglement spectrum is flat. This behavior is seemingly in sharp contradiction with the one for the thermal (microcanonical) state, and thus in apparent contradiction with the subsystem Eigenstate Thermalization Hypothesis (ETH). In this work, we resolve this issue by comparing the primary state with the KdV (micro)canonical ensemble. We show that the results are consistent with the KdV-generalized version of the subsystem ETH, in which local properties of quantum eigenstates are governed by their values of conserved KdV charges. Our work solidifies evidence for the KdV-generalized ETH in 2d CFTs and emphasizes Renyi entropy as a sensitive probe of the reduced-density matrix.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.