Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating SPARQL and LLMs for Question Answering over Scholarly Data Sources (2409.18969v2)

Published 11 Sep 2024 in cs.IR and cs.AI

Abstract: The Scholarly Hybrid Question Answering over Linked Data (QALD) Challenge at the International Semantic Web Conference (ISWC) 2024 focuses on Question Answering (QA) over diverse scholarly sources: DBLP, SemOpenAlex, and Wikipedia-based texts. This paper describes a methodology that combines SPARQL queries, divide and conquer algorithms, and a pre-trained extractive question answering model. It starts with SPARQL queries to gather data, then applies divide and conquer to manage various question types and sources, and uses the model to handle personal author questions. The approach, evaluated with Exact Match and F-score metrics, shows promise for improving QA accuracy and efficiency in scholarly contexts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.