Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement distribution in pure non-Gaussian tripartite states: a Schmidt decomposition approach (2409.18923v1)

Published 27 Sep 2024 in quant-ph

Abstract: We study entanglement in a system of three coupled quantum harmonic oscillators. Specifically, we use the Schmidt decomposition to analyze how the entanglement is distributed among the three subsystems. The Schmidt decomposition is a powerful mathematical tool for characterizing bipartite entanglement in composite quantum systems. It allows to write a multipartite quantum state as a sum of product states between the subsystems, with coefficients known as Schmidt coefficients. We apply this decomposition to the general quantum state of three coupled oscillators and study how the Schmidt coefficients evolve as the interaction strengths between the oscillators are varied. This provides insight into how entanglement is shared between the different bipartitions of the overall three-particle system. Our results advance the fundamental understanding of multipartite entanglement in networked quantum systems. They also have implications for quantum information processing using multiple entangled nodes.

Summary

We haven't generated a summary for this paper yet.