Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplicative Diophantine approximation with restricted denominators (2409.18635v1)

Published 27 Sep 2024 in math.NT

Abstract: Let ${a_n}{n\in\mathbb{N}}$, ${b_n}{n\in \mathbb{N}}$ be two infinite subsets of positive integers and $\psi:\mathbb{N}\to \mathbb{R}_{>0}$ be a positive function. We completely determine the Hausdorff dimensions of the set of all points $(x,y)\in [0,1]2$ which satisfy $|a_nx||b_ny|<\psi(n)$ infinitely often, and the set of all $x\in [0,1]$ satisfying $|a_nx||b_nx|<\psi(n)$ infinitely often. This is based on establishing general convergence results for Hausdorff measures of these two sets. We also obtain some results on the set of all $x\in [0,1]$ such that $\max{|a_nx|, |b_nx|}<\psi(n)$ infinitely often.

Summary

We haven't generated a summary for this paper yet.