Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of variational Bayesian inference for non-linear inverse problems of partial differential equations (2409.18415v1)

Published 27 Sep 2024 in math.ST and stat.TH

Abstract: We consider non-linear Bayesian inverse problems of determining the parameter $f$. For the posterior distribution with a class of Gaussian process priors, we study the statistical performance of variational Bayesian inference to the posterior with variational sets consisting of Gaussian measures or a mean-field family. We propose certain conditions on the forward map $\mathcal{G}$, the variational set $\mathcal{Q}$ and the prior such that, as the number $N$ of measurements increases, the resulting variational posterior distributions contract to the ground truth $f_0$ generating the data, and derive a convergence rate with polynomial order or logarithmic order. As specific examples, we consider a collection of non-linear inverse problems, including the Darcy flow problem, the inverse potential problem for a subdiffusion equation, and the inverse medium scattering problem. Besides, we show that our convergence rates are minimax optimal for these inverse problems.

Summary

We haven't generated a summary for this paper yet.