Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators (2409.18413v1)

Published 27 Sep 2024 in math.CA

Abstract: In this paper, we explore a specific class of bi-parameter pseudo-differential operators characterized by symbols $\sigma(x_1,x_2,\xi_1,\xi_2)$ falling within the product-type H\"ormander {class} $\mathbf{S}m_{\rho, \delta}$. This classification imposes constraints on the behavior of partial derivatives of $\sigma$ with respect to both spatial and frequency variables. Specifically, we demonstrate that for each multi-index $\alpha, \beta$, the inequality $| \partial_\xi\alpha \partial_x\beta \sigma(x_1,x_2,\xi_1,\xi_2)| \le C_{\alpha, \beta}(1+|\xi|)m\prod_{i=1}2 (1+|\xi_i|){-\rho|\alpha_i|+\delta|\beta_i|} $ is satisfied. Our investigation culminates in a rigorous analysis of the $Lp$-boundedness of such pseudo-differential operators, thereby extending the seminal findings of C. Fefferman from 1973 concerning pseudo-differential operators within the H\"ormander class.

Summary

We haven't generated a summary for this paper yet.