Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EfiMon: A Process Analyser for Granular Power Consumption Prediction (2409.17368v1)

Published 25 Sep 2024 in cs.DC and cs.PF

Abstract: High-performance computing (HPC) and supercomputing are critical in AI research, development, and deployment. The extensive use of supercomputers for training complex AI models, which can take from days to months, raises significant concerns about energy consumption and carbon emissions. Traditional methods for estimating the energy consumption of HPC workloads rely on metering reports from computing nodes power supply units, assuming exclusive use of the entire node. This assumption is increasingly untenable with the advent of next-generation supercomputers that share resources to accelerate workloads, as seen in initiatives like Acceleration as a Service (XaaS) and cloud computing. This paper introduces EfiMon, an agnostic and non-invasive tool designed to extract detailed information about process execution, including instructions executed within specific time windows and CPU and RAM usage. Additionally, it captures comprehensive system metrics, such as power consumption reported by CPU sockets and PSUs. This data enables the development of prediction models to estimate the energy consumption of individual processes without requiring isolation. Using a regression-based mathematical model, our tool is able to estimate single processes' power consumption in isolated and shared resource environments. In shared scenarios, the model demonstrates robust performance, deviating by a maximum of 2.2% on Intel-based machines and 4.4% on AMD systems compared to non-shared cases. This significant accuracy showcases EfiMon's potential for enhancing energy accounting in supercomputing, contributing to more efficient and energy-aware optimisation strategies in HPC.

Summary

We haven't generated a summary for this paper yet.