Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Processes for Observational Dose-Response Inference (2409.17043v1)

Published 25 Sep 2024 in math.ST and stat.TH

Abstract: We adapt Gaussian processes for estimating the average dose-response function in observational settings, introducing a powerful complement to treatment effect estimation for understanding heterogeneous effects. We incorporate samples from a Gaussian process posterior for the propensity score into a Gaussian process response model using Girard's approach to integrating over uncertainty in training data. We show Girard's method admits a positive-definite kernel, and provide theoretical justification by identifying it with an inner product of kernel mean embeddings. We demonstrate double robustness of our approach under a misspecified response function or propensity score. We characterize and mitigate regularization-induced confounding in Gaussian process response models. We show improvement over other methods for average dose-response function estimation in terms of coverage of the dose-response function and estimation bias, with less sensitivity to misspecification across experiments.

Summary

We haven't generated a summary for this paper yet.