Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Gini index as a Lyapunov functional to convergence in Wasserstein distance (2409.15225v1)

Published 23 Sep 2024 in q-fin.MF, math.CA, and math.PR

Abstract: In several recent works on infinite-dimensional systems of ODEs \cite{cao_derivation_2021,cao_explicit_2021,cao_iterative_2024,cao_sticky_2024}, which arise from the mean-field limit of agent-based models in economics and social sciences and model the evolution of probability distributions (on the set of non-negative integers), it is often shown that the Gini index serves as a natural Lyapunov functional along the solution to a given system. Furthermore, the Gini index converges to that of the equilibrium distribution. However, it is not immediately clear whether this convergence at the level of the Gini index implies convergence in the sense of probability distributions or even stronger notions of convergence. In this paper, we prove several results in this direction, highlighting the interplay between the Gini index and other popular metrics, such as the Wasserstein distance and the usual $\ellp$ distance, which are used to quantify the closeness of probability distributions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com