Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity (2409.14989v2)

Published 23 Sep 2024 in math.OC and cs.LG

Abstract: Due to the non-smoothness of optimization problems in Machine Learning, generalized smoothness assumptions have been gaining a lot of attention in recent years. One of the most popular assumptions of this type is $(L_0,L_1)$-smoothness (Zhang et al., 2020). In this paper, we focus on the class of (strongly) convex $(L_0,L_1)$-smooth functions and derive new convergence guarantees for several existing methods. In particular, we derive improved convergence rates for Gradient Descent with (Smoothed) Gradient Clipping and for Gradient Descent with Polyak Stepsizes. In contrast to the existing results, our rates do not rely on the standard smoothness assumption and do not suffer from the exponential dependency from the initial distance to the solution. We also extend these results to the stochastic case under the over-parameterization assumption, propose a new accelerated method for convex $(L_0,L_1)$-smooth optimization, and derive new convergence rates for Adaptive Gradient Descent (Malitsky and Mishchenko, 2020).

Citations (3)

Summary

We haven't generated a summary for this paper yet.