Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and Flexible Omnidirectional Depth Estimation with Multiple 360-degree Cameras (2409.14766v2)

Published 23 Sep 2024 in cs.CV

Abstract: Omnidirectional depth estimation has received much attention from researchers in recent years. However, challenges arise due to camera soiling and variations in camera layouts, affecting the robustness and flexibility of the algorithm. In this paper, we use the geometric constraints and redundant information of multiple 360-degree cameras to achieve robust and flexible multi-view omnidirectional depth estimation. We implement two algorithms, in which the two-stage algorithm obtains initial depth maps by pairwise stereo matching of multiple cameras and fuses the multiple depth maps to achieve the final depth estimation; the one-stage algorithm adopts spherical sweeping based on hypothetical depths to construct a uniform spherical matching cost of the multi-camera images and obtain the depth. Additionally, a generalized epipolar equirectangular projection is introduced to simplify the spherical epipolar constraints. To overcome panorama distortion, a spherical feature extractor is implemented. Furthermore, a synthetic 360-degree dataset consisting of 12K road scene panoramas and 3K ground truth depth maps is presented to train and evaluate 360-degree depth estimation algorithms. Our dataset takes soiled camera lenses and glare into consideration, which is more consistent with the real-world environment. Experiments show that our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs. The flexibility of the algorithms is experimentally validated in terms of camera layouts and numbers.

Summary

We haven't generated a summary for this paper yet.