Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-overcomplete convolutional auto-encoder embedding as shape priors for deep vessel segmentation (2409.13001v1)

Published 19 Sep 2024 in eess.IV, cs.CV, and cs.LG

Abstract: The extraction of blood vessels has recently experienced a widespread interest in medical image analysis. Automatic vessel segmentation is highly desirable to guide clinicians in computer-assisted diagnosis, therapy or surgical planning. Despite a good ability to extract large anatomical structures, the capacity of U-Net inspired architectures to automatically delineate vascular systems remains a major issue, especially given the scarcity of existing datasets. In this paper, we present a novel approach that integrates into deep segmentation shape priors from a Semi-Overcomplete Convolutional Auto-Encoder (S-OCAE) embedding. Compared to standard Convolutional Auto-Encoders (CAE), it exploits an over-complete branch that projects data onto higher dimensions to better characterize tiny structures. Experiments on retinal and liver vessel extraction, respectively performed on publicly-available DRIVE and 3D-IRCADb datasets, highlight the effectiveness of our method compared to U-Net trained without and with shape priors from a traditional CAE.

Citations (3)

Summary

We haven't generated a summary for this paper yet.