Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frobenius algebra objects in Temperley-Lieb categories at roots of unity (2409.12920v2)

Published 19 Sep 2024 in math.CT, math.QA, and math.RT

Abstract: We give a new definition of a Frobenius structure on an algebra object in a monoidal category, generalising Frobenius algebras in the category of vector spaces. Our definition allows Frobenius forms valued in objects other than the unit object, and can be seen as a categorical version of Frobenius extensions of the second kind. When the monoidal category is pivotal we define a Nakayama morphism for the Frobenius structure and explain what it means for this morphism to have finite order. Our main example is a well-studied algebra object in the (additive and idempotent completion of the) Temperley-Lieb category at a root of unity. We show that this algebra has a Frobenius structure and that its Nakayama morphism has order 2. As a consequence, we obtain information about Nakayama morphisms of preprojective algebras of Dynkin type, considered as algebras over the semisimple algebras on their vertices.

Summary

We haven't generated a summary for this paper yet.