Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minkowski difference weight formulas (2409.12802v1)

Published 19 Sep 2024 in math.RT

Abstract: Fix any complex Kac-Moody Lie algebra $\mathfrak{g}$, and Cartan subalgebra $\mathfrak{h}\subset \mathfrak{g}$. We study arbitrary highest weight $\mathfrak{g}$-modules $V$ (with any highest weight $\lambda\in \mathfrak{h}*$, and let $L(\lambda)$ be the corresponding simple highest weight $\mathfrak{g}$-module), and write their weight-sets $\mathrm{wt} V$. This is based on and generalizes the Minkowski decompositions for all $\mathrm{wt} L(\lambda)$ and hulls $\mathrm{conv}{\mathbb{R}}(\mathrm{wt} V)$, of Khare [J. Algebra. 2016 & Trans. Amer. Math. Soc. 2017] and Dhillon-Khare [Adv. Math. 2017 & J. Algebra. 2022]. Those works need a freeness property of the Dynkin graph nodes of integrability $J{\lambda}$ of $L(\lambda)$: $\mathrm{wt} L(\lambda)\ -$ any sum of simple roots over $J_{\lambda}c$ are all weights of $L(\lambda)$. We generalize it for all $V$, by introducing nodes $J_V$ that record all the lost 1-dim. weights in $V$. We show three applications (seemingly novel) for all $\big(\mathfrak{g}, \lambda, V\big)$ of our $J_Vc$-freeness: 1) Minkowski decompositions of all $\mathrm{wt} V$, subsuming those above for simples. 1$'$) Characterization of these formulas. 1$''$) For these, we solve the inverse problem of determining all $V$ with fixing $\mathrm{wt} V \ =$ weight-set of a Verma, parabolic Verma and $L(\lambda)$ $\forall$ $\lambda$. 2) At module level (by raising operators' actions), construction of weight vectors along $J_Vc$-directions. 3) Lower bounds on the multiplicities of such weights, in all $V$.

Summary

We haven't generated a summary for this paper yet.