Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preference Alignment Improves Language Model-Based TTS (2409.12403v1)

Published 19 Sep 2024 in cs.CL and cs.AI

Abstract: Recent advancements in text-to-speech (TTS) have shown that LLM (LM)-based systems offer competitive performance to their counterparts. Further optimization can be achieved through preference alignment algorithms, which adjust LMs to align with the preferences of reward models, enhancing the desirability of the generated content. This study presents a thorough empirical evaluation of how preference alignment algorithms, particularly Direct Preference Optimization (DPO), enhance LM-based TTS. With a 1.15B parameter LM-based TTS model, we demonstrate that preference alignment consistently improves intelligibility, speaker similarity, and proxy subjective evaluation scores, with the latter two metrics surpassing even human speech in certain evaluations. We also show preference alignment is applicable to low-resource scenarios and effectively generalized to out-of-domain applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com