Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Deconvolution on Graphs: Exact and Stable Recovery (2409.12164v1)

Published 18 Sep 2024 in eess.SP

Abstract: We study a blind deconvolution problem on graphs, which arises in the context of localizing a few sources that diffuse over networks. While the observations are bilinear functions of the unknown graph filter coefficients and sparse input signals, a mild requirement on invertibility of the diffusion filter enables an efficient convex relaxation leading to a linear programming formulation that can be tackled with off-the-shelf solvers. Under the Bernoulli-Gaussian model for the inputs, we derive sufficient exact recovery conditions in the noise-free setting. A stable recovery result is then established, ensuring the estimation error remains manageable even when the observations are corrupted by a small amount of noise. Numerical tests with synthetic and real-world network data illustrate the merits of the proposed algorithm, its robustness to noise as well as the benefits of leveraging multiple signals to aid the (blind) localization of sources of diffusion. At a fundamental level, the results presented here broaden the scope of classical blind deconvolution of (spatio-)temporal signals to irregular graph domains.

Citations (2)

Summary

We haven't generated a summary for this paper yet.