Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
76 tokens/sec
GPT-4o
13 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Linear Recency Bias During Training Improves Transformers' Fit to Reading Times (2409.11250v1)

Published 17 Sep 2024 in cs.CL

Abstract: Recent psycholinguistic research has compared human reading times to surprisal estimates from LLMs to study the factors shaping human sentence processing difficulty. Previous studies have shown a strong fit between surprisal values from Transformers and reading times. However, standard Transformers work with a lossless representation of the entire previous linguistic context, unlike models of human language processing that include memory decay. To bridge this gap, this paper evaluates a modification of the Transformer model that uses ALiBi (Press et al., 2022), a recency bias added to attention scores. Surprisal estimates with ALiBi show an improved fit to human reading times compared to a standard Transformer baseline. A subsequent analysis of attention heads suggests that ALiBi's mixture of slopes -- which determine the rate of memory decay in each attention head -- may play a role in the improvement by helping models with ALiBi to track different kinds of linguistic dependencies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets