Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Reviewer Experience in Code Review Comment Generation (2409.10959v1)

Published 17 Sep 2024 in cs.SE

Abstract: Modern code review is a ubiquitous software quality assurance process aimed at identifying potential issues within newly written code. Despite its effectiveness, the process demands large amounts of effort from the human reviewers involved. To help alleviate this workload, researchers have trained deep learning models to imitate human reviewers in providing natural language code reviews. Formally, this task is known as code review comment generation. Prior work has demonstrated improvements in this task by leveraging machine learning techniques and neural models, such as transfer learning and the transformer architecture. However, the quality of the model generated reviews remain sub-optimal due to the quality of the open-source code review data used in model training. This is in part due to the data obtained from open-source projects where code reviews are conducted in a public forum, and reviewers possess varying levels of software development experience, potentially affecting the quality of their feedback. To accommodate for this variation, we propose a suite of experience-aware training methods that utilise the reviewers' past authoring and reviewing experiences as signals for review quality. Specifically, we propose experience-aware loss functions (ELF), which use the reviewers' authoring and reviewing ownership of a project as weights in the model's loss function. Through this method, experienced reviewers' code reviews yield larger influence over the model's behaviour. Compared to the SOTA model, ELF was able to generate higher quality reviews in terms of accuracy, informativeness, and comment types generated. The key contribution of this work is the demonstration of how traditional software engineering concepts such as reviewer experience can be integrated into the design of AI-based automated code review models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hong Yi Lin (6 papers)
  2. Patanamon Thongtanunam (25 papers)
  3. Christoph Treude (137 papers)
  4. Michael W. Godfrey (6 papers)
  5. Chunhua Liu (10 papers)
  6. Wachiraphan Charoenwet (4 papers)

Summary

We haven't generated a summary for this paper yet.